INTRODUCTION

Segmental retaining wall (SRW) units are subject to the minimum requirements of Standard Specification for Dry-Cast Segmental Retaining Wall Units, ASTM C 1372 (ref. 1). This standard includes criteria for minimum compressive strength, maximum water absorption, maximum permissible variations in dimensions, and when required freeze-thaw durability. Test methods used to demonstrate compliance with these requirements are outlined herein.

MEASUREMENT OF DIMENSIONS

Unit dimensions are used to verify that the overall length, width and height are within the allowable ± 1/8 in. (3.2 mm) tolerances permitted by ASTM C 1372. This tolerance does not apply to architectural surfaces, such as split faces. For each unit, the overall width is measured at the mid-length of the unit across the top and bottom bearing surfaces of the unit using a steel scale marked with 1/10-in. (2.5-mm) divisions (or smaller). Similarly, the overall height is measured at the mid-length of the front and back faces. The reported overall dimensions are determined as the average of each respective measurement for width, height and length.

Additional dimensional and testing information can be found in Segmental Retaining Wall Units, TEK 2-4B (ref. 5).

ABSORPTION TESTING

Absorption describes the amount of water a unit can hold when saturated. Absorption can be an indicator of the level of compaction of the concrete mix, the aggregate gradation or simply the volume of voids within a unit. Data collected during absorption testing is used to calculate absorption and density. During absorption testing, the weight of each specimen is
Compressive strength tests are used to ensure that the SRW units meet the minimum strength requirements of ASTM C 1372: minimum net average compressive strength of 3,000 psi (20.7 MPa) for an average of three units with no individual unit less than 2,500 psi (17.2 MPa).

Some critical areas of compression testing that are necessary to insure accurate testing include:

- appropriate capping stations with stiff, planar plates with smooth surfaces,
- compression machines with spherically seated heads and bearing plates meeting the requirements of ASTM C 140 (ref. 2), and
- proper specimen alignment within the testing machine (specimen’s center of mass aligned with machine’s center of thrust).

The ASTM C 140 (ref. 2) testing procedures for compressive strength of SRW units are the same as those for conventional concrete masonry units (see TEK 18-7, ref. 4), with the exception that coupons are tested in lieu of full-size units (see ASTM C 140 section 6.2.6).

The tested compressive strength can be influenced by the size and shape of the specimen tested and the location of the cut of the coupon. To reach an oven-dry condition, the units must be dried for at least 24 hours in a ventilated oven at a temperature of 212 to 239°F (100 to 115°C). For most laboratories, this means a drying time of more than 24 hours, since several hours are typically required to raise the oven temperature to the specified range after the room-temperature SRW units are inserted.

After at least 24 hours, unit weights are recorded in two-hour intervals to ensure the units are no longer losing weight due to moisture loss. The unit is considered oven dry when two successive weighings differ by 0.2% or less. Note that when weighing the units using an electronic scale, insulating materials for the scale may be necessary, because heat radiating from a unit just removed from the oven may cause the scale to return inaccurate results.

ASTM C 1372 (ref. 1) includes the maximum water absorption requirements shown in Table 1.

<table>
<thead>
<tr>
<th>Unit weight classification:</th>
<th>Lightweight</th>
<th>Medium weight</th>
<th>Normal weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 105 pcf (< 1,682 kg/m³)</td>
<td>18 (288)</td>
<td>15 (240)</td>
<td>13 (208)</td>
</tr>
<tr>
<td>105 to < 125 pcf (1,682 to < 2,002 kg/m³)</td>
<td>15 (240)</td>
<td>13 (208)</td>
<td></td>
</tr>
<tr>
<td>≥ 125 pcf (≥ 2,002 kg/m³)</td>
<td>13 (208)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Based on oven-dry density of concrete.
FREEZE-THAW DURABILITY

In areas where the segmental retaining wall is likely to be exposed to repeated freezing and thawing under saturated conditions, ASTM C 1372 requires that freeze-thaw durability be demonstrated in one of the following ways:

1. proven field performance,
2. each of five specimens shall have less than 1% weight loss after 100 cycles, or
3. four of five specimens shall each have less than 1.5% weight loss after 150 cycles.

When required, testing is in accordance with ASTM C 1262, Standard Test Method for Evaluating the Freeze-Thaw Durability of Manufactured Concrete Masonry Units and Related Concrete Units (ref. 3), an accelerated laboratory test that provides an indication of relative performance when the units are placed in service. Testing in accordance with ASTM C 1262 can be conducted using water or saline (3% sodium chloride by weight) as the media. ASTM C 1372, however, does not require freeze-thaw evaluation in saline, recognizing that for most applications, tests in water are considered sufficient. If the units are to be exposed to deicing salts on a regular basis, local project specifications should be consulted to determine if testing in saline is required.

Freeze-thaw durability test methods are prescribed because freeze-thaw durability cannot be reliably predicted based on factors such as compressive strength, absorption or concrete density. A unit’s freeze-thaw durability can be influenced by manufacturing variables such as:

- aggregate type,
- production methods,
- cement content and
- presence of admixtures;

as well as field variables, including:

- exposure to moisture (source, volume, frequency)
- environment (drainage, exposure to shade or sunlight, exposure to salt and chemicals) and
- temperatures (rate of change, peak values, number of cycles, cycle lengths).

C 1262 testing is carried out on five specimens representative of the entire lot. These units should be marked for identification, as for C 140 testing. Specimens used for C 140 absorption testing should not subsequently be used for freeze-thaw testing.

One coupon is saw-cut from each SRW unit. The side of the coupon has a surface area 25 to 35 in.\(^2\) (635 to 889 mm\(^2\)) and a thickness of 1 1/4 in. ± 1/16 in. (32 ± 2 mm) (see Figure 2). The coupon should be cut from the exposed face of the unit (as it will be placed in service), unless that face is split, fluted, ribbed or otherwise nonplanar. In these cases, the coupon should be cut from another flat molded surface. Saw-cut coupons are then rinsed in water (not submerged), brushed with a soft bristle brush to remove residue and any loose particles then allowed to air dry on edge for at least 48 hours.

Each specimen is placed in a container, as shown in Figure 3, with the appropriate liquid media. After one hour, more liquid is added as necessary to maintain the prescribed level. After 24 hours in the container, the specimen is removed and allowed to drain for one minute on a 3/8-in. (9.5-mm) or coarser wire mesh, removing surface water with a damp cloth. The specimen is immediately weighed to determine the reference weight \(W_p\), after which the specimen is returned to the container and additional water or saline is added if necessary prior to the cyclic freeze-thaw testing.

Specimens are then subjected to freezing and thawing cycles, as follows (see Figure 4):

- Freeze cycle: 4 to 5 hr, or longer to ensure that all water is

![Figure 4—Freeze-Thaw Cycle Requirements](image-url)

One coupon is saw-cut from each SRW unit. The side of the coupon has a surface area 25 to 35 in.\(^2\) (635 to 889 mm\(^2\)) and a thickness of 1 1/4 in. ± 1/16 in. (32 ± 2 mm) (see Figure 2). The coupon should be cut from the exposed face of the unit (as it will be placed in service), unless that face is split, fluted, ribbed or otherwise nonplanar. In these cases, the coupon should be cut from another flat molded surface. Saw-cut coupons are then rinsed in water (not submerged), brushed with a soft bristle brush to remove residue and any loose particles then allowed to air dry on edge for at least 48 hours.

Each specimen is placed in a container, as shown in Figure 3, with the appropriate liquid media. After one hour, more liquid is added as necessary to maintain the prescribed level. After 24 hours in the container, the specimen is removed and allowed to drain for one minute on a 3/8-in. (9.5-mm) or coarser wire mesh, removing surface water with a damp cloth. The specimen is immediately weighed to determine the reference weight \(W_p\), after which the specimen is returned to the container and additional water or saline is added if necessary prior to the cyclic freeze-thaw testing.

Specimens are then subjected to freezing and thawing cycles, as follows (see Figure 4):

- Freeze cycle: 4 to 5 hr, or longer to ensure that all water is

![Figure 2—Coupon for Freeze-Thaw Durability Testing](image-url)

![Figure 3—Freeze-Thaw Immersion](image-url)

Freeze-thaw durability test methods are prescribed because freeze-thaw durability cannot be reliably predicted based on factors such as compressive strength, absorption or concrete density. A unit’s freeze-thaw durability can be influenced by manufacturing variables such as:

- aggregate type,
- production methods,
- cement content and
- presence of admixtures;

as well as field variables, including:

- exposure to moisture (source, volume, frequency)
- environment (drainage, exposure to shade or sunlight, exposure to salt and chemicals) and
- temperatures (rate of change, peak values, number of cycles, cycle lengths).

C 1262 testing is carried out on five specimens representative of the entire lot. These units should be marked for identification, as for C 140 testing. Specimens used for C 140 absorption testing should not subsequently be used for freeze-thaw testing.
frozen, at 0 ± 10°F (-17 to -5°C) air temperature
Thaw cycle: 2.5 to 96 hr, to ensure that all ice has thawed, at 75 ± 10°F (24 ± 5°C) air temperature.

After the specified number of cycles is complete, any residue is collected, dried and weighed to determine the percentage weight loss, as follows:
• determine weight of residue from each evaluation period, \(W_r \), from (weight of the dried residue and filter paper) - (initial weight of the filter paper)
• add \(W_r \) from each evaluation period to determine total accumulated residue weight, \(W_{residue} \)
• after the freeze-thaw testing is complete, dry each specimen and weigh to determine \(W_{final} \)
• calculate the initial weight of the specimen from: \(W_{initial} = W_{final} + W_{residue} \)
• determine the cumulative weight loss of each residue collection interval both in grams and as a percentage of \(W_{initial} \) as shown in Table 2.

Table 2—Procedure for Calculating Weight Loss Due to Freeze-Thaw Testing (ref. 3)

<table>
<thead>
<tr>
<th>interval number</th>
<th>residue weight, g:</th>
<th>cumulative residue weight, g:</th>
<th>cumulative weight loss, g:</th>
<th>cumulative weight loss, %:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (W_{r1})</td>
<td>(W_{r1})</td>
<td>(W_{initial} - W_{r1})</td>
<td>((W_{initial} - W_{r1})/W_{initial})</td>
<td></td>
</tr>
<tr>
<td>2 (W_{r2})</td>
<td>(W_{r1} + W_{r2})</td>
<td>(W_{initial} - (W_{r1} + W_{r2}))</td>
<td>((W_{initial} - (W_{r1} + W_{r2}))/W_{initial})</td>
<td></td>
</tr>
<tr>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td>(\vdots)</td>
<td></td>
</tr>
<tr>
<td>(n) (W_{rn})</td>
<td>(W_{r1} + W_{r2} + \ldots W_{rn})</td>
<td>(W_{initial} - (W_{r1} + W_{r2} + \ldots W_{rn}))</td>
<td>((W_{initial} - (W_{r1} + W_{r2} + \ldots W_{rn}))/W_{initial})</td>
<td></td>
</tr>
</tbody>
</table>

REFERENCES

Disclaimer: Although care has been taken to ensure the enclosed information is as accurate and complete as possible, NCMA does not assume responsibility for errors or omissions resulting from the use of this TEK.